
Studies in Astronomical Time Series Analysis.
VI. Optimal Segmentation: Blocks, Triggers, and Histograms

Jeffrey D. Scargle

Space Science Division, NASA Ames Research Center

Jay Norris

Laboratory for High Energy Astrophysics
Code 661, NASA Goddard Space Flight Center

Brad Jackson
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Abstract

This paper addresses the problem of detecting and characterizing
local variability in time series. Since such data are always corrupted
by observational errors, the goal is to find statistically any significant
variations and ignore the inevitable random noise fluctuations. We
present a simple nonparametric modeling technique and an algorithm
implementing it—an improved and generalized version of Bayesian
Blocks [?]—that finds the optimal partitioning of the observation in-
terval. The structure of the algorithm allows it to be used in either a
real-time, trigger mode, or a retrospective mode. Maximum likelihood
or marginal posterior functions to measure model fitness are presented
for points, binned counts, and measurements at arbitrary times with
a known error distribution. The same algorithm can also be used to
compute histograms.
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1 INTRODUCTION: BLOCK SEGMENTATION 3

1 Introduction: Block Segmentation

The goal is to analyze noisy time series data to detect and then characterize any
signal present, while imposing few preconditions. In particular, we wish to avoid
smoothness or shape assumptions that place a priori limitations on scales and
resolution. The algorithm should handle arbitrary sampling (i.e., not be limited
to gapless, evenly spaced data) and large dynamic ranges in amplitude and
scale. For scientific data mining applications and for objectivity, the method
should be largely automatic. It should eliminate noise while conserving the
valid information in the data. It should be applicable to multivariate problems.
Incorporation of auxiliary, extrinsic data, such as spectral or color information,
and variable exposure, should be possible. It should be able to operate both
retrospectively (model of all the data after they are collected) and in a real-
time fashion that triggers on the first significant variation of the signal from its
background level.

Our algorithm achieves these desiderata in a simple computational frame-
work that is easy to use and represents the structure in the signal in a form
handy for further analysis and the estimation of physically meaningful quanti-
ties. It includes an automatic penalty for model complexity, thus solving the
vexing problem often called determining the order of the model. It is exact, not
a greedy1 approximation as in [?].

These desiderata suggest the use of the most generic possible nonparametric
data model, and have motivated our development of data segmentation and
Bayesian changepoint methods [?]. It is remarkable that a very simple idea
– fitting of piecewise constant models to the data – achieves essentially all of
the above desiderata. This approach yields a step-function, or segmented, rep-
resentation of the signal in which the range of the independent variable (e.g.
time) is automatically divided into unequal subintervals, in each of which the
dependent variable (e.g. intensity) is modeled as constant.

The algorithm presented here detects local, rather than global, structure.
That is, we target signal features confined to an interval of time smaller than
the whole interval measured. Specifically it is not meant for periodic signal.

While much faster than an explicit search of the exponentially large param-

1This term refers to iterations making optimal improvements at each step, but not guaranteed of an optimal
overall solution.
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eter space, the runtime of the simple algorithm is O(N 2). This computational
complexity may be prohibitive in some large problems, but an effective way to
reduce the time to ∼ NlogN is in development.

The following sections discuss in turn the basic piecewise constant model
(§??), partitioning an interval into blocks, and the corresponding optimization
(§??), a variety of block fitness functions (§??), and example applications (§??).
An appendix presents some MatLab code.

2 The Model: Piecewise Constant

As just indicated we are led to employ a very simple model, in which the
data interval is partitioned into segments (here called blocks) and the signal is
taken to be constant within each segment. The model for each block has three
parameters: the start and stop times and the signal amplitude. In the full model
of the data interval the first two are not independent, since one block begins
where another leaves off. (Even in the presence of data gaps this condition can
be maintained; see §??). Accordingly these time parameters are represented as
a finite set of changepoints, one at the beginning of each block.2 The amplitude
is a parameter representing signal strength, e.g. in the case of event data the
Poisson rate parameter averaged over the block.

This representation is in the spirit of nonparametric approximation, and
not meant to imply that we believe the signal is actually discontinuous. The
crude, blocky appearance of our discontinuous model may be a liability in the
context of visualization, but for deriving physically meaningful quantities it
not. Blocky models are broadly useful in signal processing [?] and have several
motivations. Their simplicity allows exact treatment of various quantities, such
as the likelihood. We can optimize or marginalize the rate parameters exactly,
giving simple formulas for the fitness function. And we regard the estimated
model itself as less important than quantities derived from it. For example,
while smoothed plots of pulses within gamma-ray bursts make pretty pictures,
one is really interested in pulse locations, lags, amplitudes, widths, rise and
decay times, etc. Such quantities can be accurately determined directly from
the locations, heights and widths of the blocks.

2Our convention is that the first observation is a changepoint, marking the start of the first block, but the
last one, ending the last block, is not.
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Especially for measuring similarity among time series and pattern matching,
piecewise linear models are often used [?]. Such models may look better than
piecewise constant ones, but the improved flexibility is largely offset by added
complexity of the model and its interpretation. Note further that if continuity is
imposed at the changepoints, a piecewise linear model has essentially the same
number of parameters, or degrees of freedom, as does the simpler piecewise
constant model.

Below §?? discusses partitions of the data interval, a convenient data rep-
resentation scheme, and the new algorithm for computing optimal partitions.
Then §?? exhibits the computation of cost functions for a variety of data modes,
followed by numerical simulations and other examples in §??.

3 Optimum Partition of an Interval

The algorithm presented here works on any sequential data. We introduce it
in a somewhat abstract setting because it can be used for other partitioning
problems beyond time series analysis. In a special case it implements Bayesian
blocks or other 1D segmentation ideas for any model fitness function that sat-
isfies a simple additivity condition. It improves on our previous approximate
segmentation algorithms [?] by achieving a rigorous solution of the multiple
changepoint problem, and by guaranteeing to find the global maximum, not
just a local one. These features are made possible by reducing the infinite opti-
mization search space to a finite set of partitions consisting of blocks containing
discrete data cells, as we now demonstrate.

3.1 Data Cells

The set of possible values of the independent variable is called the data space.
For the one dimensional case treated here, the data space is usually an inter-
val, such as the time over which observations have been made. The measured
quantity can be almost anything. Commonly it is either a continuous physical
variable or the density of discrete events.

Consider observational data comprising N sequential elements

xn, n = 1, 2, . . . , N. (1)
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The specific meaning of the quantities xn is left vague because almost any of a
wide variety of data types can be treated within this formalism. Simple exam-
ples are: points, counts of points in bins, and measurements – correspondingly,
the array x would contain point coordinates; counts, bin sizes and locations;
and measured values and their uncertainties, respectively. The only require-
ment is that the data be ordered (i.e., sequential), meaning that each xn is
associated with a time tn, such that the latter are ordered and contained in
some time interval I:

min(I) ≤ t1 < t2 < . . . < tN ≤ max(I) . (2)

In general tn specifies the time of measurement, be it a point or an interval.
For event data (also called point data), tn is just the time of event n. Although
times are often represented as real numbers, the finite accuracy of measurement
means that one is really specifying an integer multiple of some small unit of
time (typically on the order of milliseconds to microseconds in high energy
astrophysics). For cases such as binned counts or measurements averaged over
finite time intervals, the time interval must be specified, either explicitly (as in
an array giving the lengths of a series of unequal time bins) or implicitly (e.g.
through specification of a fixed bin size and time of the first bin).

It is convenient to represent such sequential data by a data structure con-
sisting of a set of N data cells

Cn ≡ {xn, tn} , (3)

derived from the raw data. They form an ordered sequence with respect to
the independent variable t, can be grouped into blocks (§??) forming partitions
of I (§??), and contain whatever data quantities are necessary to evaluate the
fitness (§??) of an arbitrary partition. In some cases two or more data elements
are combined into a single cell (see e.g. the discussion of duplicate time tags in
§??), but for the most part data cells correspond one-to-one with data elements.
Figure ?? is an abstract cartoon of the data cell concept.

3.2 Blocks of Cells

A block is a set of adjacent cells. Panel (b) of Figure ?? shows a sequence of 32
data cells divided into five blocks. The following notation for blocks is useful:

B(n,m) ≡ {Cn, Cn+1, . . . Cm} , (4)
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Figure 1: Pictorial representation of data cells and the blocks made from them. The horizontal
axis represents the independent variable (often, but not necessarily, time), with respect to
which the data are ordered. The sequential order depicted in Panel (a) is the only essential
requirement for data to be analyzable with our block algorithm. Panel (b) exemplifies the
partition of the set of data cells into blocks. The shaded cells are changepoints marking the
beginnings of the blocks.

that is m−n+1 cells in sequence. The case m = n represents a block consisting
of just one cell, as in the last block of the partition in Figure ??(b). The
model of the time series data is segmented into blocks, meaning that any model
parameters are constant within each block but undergo discrete jumps at the
changepoints (§??) marking the edges of the blocks. The concept of fitness of
a block is fundamental to everything else in this paper; the fitness of a partition
(§??) is the sum of the fitnesses of the blocks comprising it.

3.3 Partitions

A partition of the interval I is simply a set of non-overlapping blocks that
together add up to the whole interval.3 A partition can be defined by specifying
the number of blocks (the elements of the partition) Nblocks, and the block edges
nk:

P(I) ≡ {Nblocks, nk, k = 1, 2, 3, . . . Nblocks} . (5)

3A partition of I is a set of blocks that add up to I (I =
⋃
k Bk) with no overlap (Bj

⋂
Bk =

∅ (the null set), for j 6= k).
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Figure 2: Pictorial representation of data cells and the blocks made from them. The horizontal
axis represents the independent variable (often, but not necessarily, time), with respect to
which the data are ordered. The sequential order depicted in Panel (a) is the only essential
requirement for data to be analyzable with our block algorithm. Panel (b) exemplifies the
partition of the set of data cells into blocks. The shaded cells are changepoints marking the
beginnings of the blocks.

There are one fewer changepoints than blocks, since by convention the first
block begins at the first data cell – n1 ≡ 1 is implicit – and the last block
terminates with the last data cell. As described in §?? we will seek from the set
of all possible partitions that one which maximizes a given function. How many
different partitions of N cells are possible? Establish a 1-1 mapping between
partitions and binary numbers of length N , by setting the k-th digit to 1 if cell
k is a changepoint, 0 otherwise. Remembering that the first cell is always a
changepoint, the number of partitions is then

Npartitions = 2N−1 (6)

Except for short time series this number is too large for an exhaustive search,
but our algorithm nevertheless finds the optimum over this space in a time that
scales as only N 2.
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3.4 Fitness of a Partition

Since the goal is to represent the data as well as possible within a given class of
models, we maximize4 a quantity measuring the fitness of models in the given
class (here the class of all piecewise constant models. For the algorithm to work
it is essential that

F [P(I)] =
Nblocks∑
k=1

f(Bk) , (7)

where F [P(I)] is the total fitness and f(Bk) is the fitness of block k. For
fitness functions based on posterior probabilities, this additivity is implied by
independence of the observational errors at different times.

Specific examples and details of fitness functions are given below in §??.
What is important here is that we marginalize, or otherwise eliminate, all model
parameters except the times defining the beginning and end of the blocks [?].
Then the total fitness depends on only the partition, i.e. P(I). The best model
is found by maximizing F over all possible partitions. As an example, the fitness
function we adopt for count data depends only on the changepoints, and not
on the Poisson rate parameters within the blocks. (Later the values of these
marginalized parameters can be estimated in an almost trivial way, once the
changepoints of the optimum partition are determined.)

3.5 Changepoints

We call the time separating two blocks a changepoint5. In principle changepoints
can be anywhere in the interval, but we restrict them to occur at times assigned
to the data cells. The reasoning is that moving a changepoint lying between
two data cells to a new location between the same cells does not sensibly change
the model’s representation of the data. This simplification reduces the search
over an infinite space to a finite optimization problem.

In some applications it might be useful to assign a data cell that is a change-
point to be in both the subsequent and previous blocks, but here we assign it to
only one – with the convention that a changepoint is the first cell in the subse-
quent block (rather than the last cell of the previous block). Correspondingly,

4Alternatively, one can minimize an error measure. Both are called optimization.
5In statistics, a changepoint in a time series is a point at which the statistical model undergoes an abrupt

transition, usually by one or more of its parameters jumping to a new value
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since the smallest partition consists of a single block containing all data cells,
the first data cell is always a changepoint. If the last cell is a changepoint, it
demarcates a block consisting of that one cell, as in panel (b) of Figure ??,
where the five changepoints dividing the data cells into five blocks are shaded.

3.6 A Lemma on Subpartitions

We define a subpartition of a given partition P(I) to be a partition (of a subset
of I) consisting of a subset of the blocks of P(I). Although not a necessary
condition for the lemma to be true, in all cases of interest here the blocks in
the subpartition are contiguous, and thus form a partition of a subinterval of
I. Below we will make use of this simple result on subpartitions of optimal
partitions:

Lemma: A subpartition of an optimal partition is an optimal
partition of the subset it covers.

Let P′ be the subpartition and I ′ the subset of I that it covers. If there were
a partition of I ′, different from and fitter than P′, then combining it with the
blocks of P not in P′ would, by the block additivity condition, yield a partition
of I fitter than P, contrary to the optimality of P.

Corollary: removing the last block of an optimal partition leaves an optimal
partition.

3.7 The Algorithm

We have assembled the definitions and results needed to state our procedure
and prove that it finds a global optimum partition. This algorithm is in the
spirit of dynamic programming [?]. It begins with the first data cell, adding
one more at each step until the whole interval has been treated. This feature
makes the algorithm suitable for real-time applications (see §??).

The proof is by mathematical induction: if a theorem is true for R = 1, and
one can show that, if it is true for R then it is true for R+ 1, then the theorem
holds for all R. At step R the algorithm finds the optimum partition of the
interval comprised of data cells IR ≡ {C1, C2, . . . CR}. To analyze all the data,
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take R = 1, 2, . . . N . The case R = 1 is trivial: there is only one cell, and the
only partition possible is the optimum one.

Now suppose we have completed step R, having obtained the optimal par-
tition Popt[IR], hereafter abbreviated Popt(R), and are now at step R + 1 and
wish to find the optimal partition Popt(R+1). Assume further that we have
kept a running record of the fitness of the optimum partition obtained at each
previous step (call this array best) and the location of the last changepoint in
that partition (call this array last). It is straightforward to compute

M(r) ≡ f [B(r, R + 1)] (r = 1, 2, . . . R + 1) (8)

that is, the fitness of a putative last block starting at r and extending to the end
of the current interval. For example M(1) is the fitness of the whole interval
currently in play, namely the cells from 1 through R + 1.

Using the block additivity of fitness, Eq. (??), the fitness of the partition of
IR+1 consisting of the optimum partition Popt[Ir−1] followed by a single block
B(r, R + 1) is:

A(r) = M(r) +{ 0 r = 1
best(r − 1), r = 2, 3, . . . , R + 1 , (9)

Now comes the key reasoning step. While we don’t yet know what it is, the
new optimum partition Popt(R+1) must exist and must have a last changepoint,
say r∗.6 From its definition A(r∗) is the fitness of Popt(R + 1). In particular,
best(r∗ − 1) is the fitness of the optimal subpartition consisting of all but the
last block of Popt(R + 1), and M(r∗) is the fitness of said last block. Further,
any partition with its last changepoint at some other r 6= r∗ must have fitness
not greater than that of Popt(R + 1), so we have

A(r) ≤ A(r∗) for r 6= r∗ . (10)

In other words, the maximum of A(r) occurs at r∗:

r∗ = argmax[A(r)] , (11)

so finding the fitness and last changepoint of Popt(R + 1) is just a matter of
finding the maximum of the array A and the index r at which this maximum
occurs.

6Any finite combinatorial optimization problem has at least one solution. Also, all partitions have at least
one changepoint.
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At the end of the computation, it only remains to find the locations of the
optimal changepoints. The needed information is contained in the array last(r)
in which we have stored the index r∗ at each step. Using the corollary of the
subpartition lemma, it is a simple matter to use the last value in this array
to determine the last changepoint in P opt(N), peel off the end section of last
corresponding to this last block, and repeat. That is to say, the values

(1) cp1 = last(N)

(2) cp2 = last(cp1 − 1)

(3) cp3 = last(cp2 − 1)
. . .

are the index values giving the locations of the changepoints, in reverse or-
der. The positions of the changepoints are not necessarily fixed until the very
last iteration, although in practice it turns out that they become more or less
“frozen” once a few succeeding changepoints have been detected.

The MatLab code for the algorithm in Appendix XX indicates how all of
these computations are implemented.

4 Block Fitness Functions for Sequential Data

Here we outline the computation of model fitness. The fitness function for a
fixed block of data numerically evaluates how well a constant signal strength
represents whatever data lie in that block. The resulting quantities for all
blocks in the observation interval are combined to form a fitness measure for
the complete (piecewise constant) model.

For our algorithm to work, in addition to being block-additive [§??, Eq.
(??)], the total model fitness must depend on only parameters which specify
the locations of the block edges, i.e. the changepoints (§??). We must account
for and eliminate all other parameters. The only ones in our model are the
block signal strengths, which can be eliminated by taking block fitness to be
the likelihood either maximized or marginalized with respect to signal strength.
In both cases the result is a quantity assessing alternative models for the data,
not an absolute goodness-of-fit.
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Computation of fitness functions varies with the data mode, but the following
features are common to all cases considered in this paper. The fitness function
always depends on only the parameters describing the error distribution of
whatever measurements lie in the block. For event data governed by the Poisson
distribution (§§??, ??), there are exactly two such sufficient statistics : N , the
number of events in the block, and M , the length of the block. In other cases
(e.g. §??) the number of parameters depends on the form of the distribution.
If the sufficient statistics for a block are the sums of those for its cells (as in all
cases treated here), the computations are simplified; however this condition is
not essential.

It is interesting to note some things that do not matter, because they do not
change the sufficient statistics. For example, the actual locations of the data
cells within their assigned blocks do not matter. The cells in a block need not
even be contiguous. This allows a very simple treatment of data gaps. Or the
cells near the beginning and the end of the interval might be assigned to the
same block. For example, the pre-burst and post-burst data from a gamma ray
burst could combine into a single block representing a constant background.
An algorithm explicitly allowing wraparound would be a natural way to deal
with this case. These extensions are of most interest for higher dimensional
data, and will be further discussed in a future paper.

Finally, there are two types of factors in a fitness function that can be ig-
nored, for different reasons. First, a factor in the likelihood for each data cell
that does not depend on the rate parameter yields a simple constant factor for
the whole time series (namely the product of the factor over all the data cells),
independent of both the rate parameter and where the changepoints lie. Such a
factor cancels out in any explicit model comparison, and is irrelevant as well for
the implicit model comparison that takes place in our optimization algorithm.
Second, there are factors in the fitness function for each block that are inde-
pendent of the rate parameter. These factors do matter, but they contribute
to the log of the fitness function a term proportional to the number of blocks,
and as such can be absorbed into the parameter derived from the prior on the
number of blocks (cf. §??).

Many of the data modes discussed in the following subsections are part of
the Burst and Transient Source Experiment (BATSE) experiment on board the
now-defunct NASA Compton Gamma Ray Observatory (GRO). However, they
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are relevant to a wide range of astronomical data acquisition systems, especially
in high energy astrophysics.

4.1 Event Data

Sometimes the physical process, or perhaps the way it is recorded, takes the
form a sequence of discrete events, each yielding a point in the data space. (In
practice, the coordinates of the points are integer multiples of some small but
finite unit–and are thus discrete, not continuous. This fact is important for the
computations below.) The quantity of ultimate interest is the distribution func-
tion of the points, interpretable as the intensity or probability density of some
physical variable. Accordingly the terms density estimation and rate estimation
are sometimes used. A key example is the case where the events are the detec-
tion of individual photons, the corresponding points are the measured detection
times, and the quantity of interest is the radiation intensity as a function of
time.

For point data, it is natural to associate one cell with each event. However, if
the detector can detect two (or more) events that are simultaneous to within its
timing accuracy, such pairs would be assigned to the same cell. Since data cells
must contain whatever information is necessary to compute the fitness function
of a block containing the cells (§??), the data structure representing the cells
must contain the number of events assigned to the cell (most often 1) and the
length of the interval associated with the event.

There is more than one way to make such an association between sequential
events and intervals. Perhaps most natural is to assign to a point all times
closer to it than to any other data point. This resulting intervals join the
midpoints between successive events. This concept generalizes to data spaces
of any dimensions (where it is called the Voronoi tessellation of the data points,
[?, ?, ?]), allowing finite partitions which adequately approximate the infinite
set of arbitrary partitions.

Alternatively, one can use the intervals between successive data points–
assigning half of an event to the interval immediately to its left and half to
the one immediately to its right. This choice may handle the onset of a steep
gradient in the underlying density slightly better, and is also easily generalized
to higher dimension where it is known as the Delaunay triangulation [?]. The
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algorithm described below allows use of either of these interval schemes.
The analysis in §2.2.1 of [?] can be carried over largely unchanged to the

cell-based approach described here. But we offer several extensions of that
work. First, we develop a new class of fitness functions based on maximizing
the likelihood with respect to the rate parameter, in contrast to marginalizing
it as in computing the Bayesian posterior. In addition, for the case where we
compute the posterior we consider a prior with a finite range, as opposed to the
flat prior over an infinite range. And we include variable bin size and exposure
factors.

As mentioned above, and detailed in §2.2.1 of [?], assume that there is an
elementary quantum of time–a tick–set by the measurement system. This is
the finest time resolution the measurement apparatus is capable of recording.
Let nm be the number of events (e.g. photons) detected in tick m. We consider
two data modes. In mode 1 the number of events in a given tick is presumed to
follow a Poisson distribution. Mode 2 corresponds to situations where detection
of more than one event at a given time is not possible, typically due to the
deadtime of the detector, so that the number of events in a tick can be only
0 or 1. An example is time-tagged event (TTE) data in which duplicate time
tags are not allowed. The fitness functions for the two modes, while similar,
are different enough that the appropriate one should be used in practice.

4.1.1 Poisson Distributed Event Data

For mode 1, the likelihood for tick m is, from the Poisson distribution

Lm =
λnm e−λ

nm!
. (12)

The block likelihood is the usual product

L(k) =
Mk∏
m=1

λnme−λ

nm!
. (13)

where Mk is the number of ticks in block k. Simplifying and collecting the
factors for ticks with the same number of events, we have

L(k) = e−λM
k
∞∏
n=0

(
λn

n!
)H(n) , (14)
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where H(n) is the number of ticks in the block with n events. The factor
resulting from the factorial in the denominator is a constant, independent of
the model, and therefore irrelevant for model comparison. Dropping this factor,
and noting that

∑∞
n=0 nH(n) = Nk, we have

L(k) = λN
k

e−λM
k

(15)

In this context it is often suggested that one should employ the intervals
between successive events, since they in some sense carry the rate information
more directly than do the actual times. We will now show that the likelihood
based on intervals is essentially equivalent to the one above. It is a classic
result [?] that intervals between independent events distributed uniformly in
time with a constant rate λ is exponential:

P (dt) = λe−λdtU(dt), (16)

where U(x) is the unit step function:

U(x) = 1 x ≥ 0

= 0 x < 0

Pretend that the data consists of the inter-event intervals, and we do not even
know the absolute times. The likelihood of our constant-rate Poisson model for
interval dtn ≥ 0 is

Ln = λe−λdtn, (17)

so the block likelihood is

L(k) =
Nk∏
n=1

λe−λdtn = λN
k

e−λM
k

, (18)

This likelihood is the same as that in Eq. (??).
There are two ways to proceed. The first is to find the maximum of this

likelihood as a function of λ, which is at λ = Nk

Mk , so we have

Lmax = (
Nk

Mk
)N

k

e−N
k

(19)

The log of this expression,

logLmax = Nk(log N
k

Mk − 1) , (20)
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is the maximum likelihood fitness function for event data following a Poisson
distribution.

In the other approach, we marginalize the likelihood in Eq. (??) with the
finite-range constant prior, giving

P =
1

λ2 − λ1

∫ λ2

λ1

λN
k

e−λM
k

dλ (21)

yielding

P =
1

λ2 − λ1

1

(Mk)Nk+1

∫ z2

z1
zN

k

e−zdz (22)

where z1,2 = Mkλ1,2. In terms of the incomplete gamma function

γ(a, x) ≡
∫ x

0
za−1e−zdz (23)

this is
P = 1

λ2−λ1

1
(Mk)Nk+1

[ γ(Nk + 1, z2)− γ(Nk + 1, z1) ] . (24)

The unnormalizable flat prior that extends to infinity gives

P = 1
(Mk)Nk+1

Γ(Nk + 1) , (25)

differing slightly from Eq. (29) of [?] only because of different priors for λ.
Another commonly used prior is the so-called conjugate Poisson distribution

P (λ) = C λα−1e−βλ . (26)

As noted by [?] this “prior density is, in some sense, equivalent to a total
count of α-1 in β prior observations” a relation that might be useful in some
circumstances. The normalization constant C = βα

Γ(α) will be ignored. With this
prior the marginalized posterior probability is

P =
∫ ∞

0
λN

(k)+α−1e−λ(M (k)+β)dλ , (27)

or

P = Γ(N (k)+α)
(M (k)+β)N(k)+α

(28)

Note that this prior and posterior reduce to those in Eqs. (28) and (29) of [?]
for α = 1, β = 1.
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Equations (??), (??), (??) and (??) are the forms to be used whenever the
counts in each tick follow the Poisson distribution. This includes both time-
tagged data where duplicate tags are permitted and, as we will see below in
§??, binned data.

Recently [?] has derived a statistic for event clustering in Poisson process
data that tests departures from the known interval distribution (see the dis-
cussion above), by evaluating the likelihood over a restricted interval range.
Prahl’s statistic is

MN =
1

N

∑
∆Ti<C∗

(1− ∆Ti
C∗

) , (29)

where ∆Ti is the interval between events i and i+ 1, and

C∗ ≡ 1

N

∑
∆Ti (30)

is the empirical mean interval. In other settings, the fact that this statistic is
a global measure of departure of the distribution (used here only locally, over
one block) may be useful in the detection of periodic, and other global, signals
in event data. Results using the Prahl statistic are given below in §??.

4.1.2 0-1 Event Data: Duplicate Time Tags Forbidden

In this mode duplicate time tags are not allowed, the number of events detected
at a given tick is 0 or 1, and the corresponding tick likelihood is:

Lm(λ) = e−λ = 1− p nm = 0 (31)

= 1− e−λ = p nm = 1 (32)

where λ is the model event rate. From the Poisson distribution p = 1− e−λ is
the probability of an event, 1−p = e−λ that of no event. We can therefore use p
or λ interchangeably to specify the event rate. Since independent probabilities
multiply, the block likelihood is the product of the tick likelihoods:

L(k) =
Mk∏
m=1

Lm = pN
k

(1− p)Mk−Nk

(33)

where Mk is the number of ticks in block k and Nk is the number of events in
the block.
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There are again two ways to proceed. The maximum of this likelihood occurs
at p = Nk

Mk and is

Lmax = (
Nk

Mk
)N

k

(1− Nk

Mk
)M

k−Nk

(34)

Using the logarithm of the maximum likelihood,

log(Lmax) = Nklog(N
k

Mk ) + (Mk −Nk)log(1− Nk

Mk ) (35)

yields the additivity needed for our cost function.
An alternative way to quantify the fitness of the class of constant models to

marginalize the rate parameter. That is to say, we remove this parameter by
integrating it out:

P (Bk) =
∫
L(k)P (λ)dλ , (36)

where P (λ) is the prior probability distribution for the rate parameter. Here
we adopt a generic prior that is consistent with not having any particular prior
information about the event rate, except that it must be positive. In [?] we used
p as the independent variable, and chose a prior flat (constant) as a function of
p. Here, we use a prior flat as a function of the rate parameter:

P (λ) = 1
λ2−λ1

λ1 ≤ λ ≤ λ2 (37)

= 0 otherwise (38)

The posterior, marginalized over λ is then:

P =
1

λ2 − λ1

∫ λ2

λ1

(1− e−λ)Nk

(e−λ)M
k−Nk

dλ . (39)

Changing variables to p = 1− e−λ, with dp = e−λdλ, this integral becomes

P =
1

λ2 − λ1

∫ p2

p1

pN
k

(1− p)Mk−Nk−1dp , (40)

with p1 = 1 − e−λ1 and p2 = 1 − e−λ2, expressible in terms of the incomplete
beta function

B(z; a, b) =
∫ z

0
ua−1(1− u)b−1du (41)

as follows:

P = 1
λ2−λ1

[B(p2;N
k + 1,Mk −Nk)−B(p1;N

k + 1,Mk −Nk)] . (42)
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The incomplete beta function reduces to the ordinary beta function for z = 1,
so for the infinite range case λ1 = 0, λ2 =∞; p1 = 0, p2 = 1 we have

P∞ = B(Nk + 1,Mk −Nk) , (43)

differing from Eq. (21) of [?] by one in the second argument, due to the dif-
ference between a prior flat in p and one flat in λ. All of the equations (??),
(??), and (??), in their logarithmic form, can be used as fitness functions in
the global optimization algorithm, and will be demonstrated below.

4.1.3 Time-to-Spill Data

As discussed in §2.2.3 of [?], reduction of the necessary telemetry rate is some-
times accomplished by recording only the time of detection of every Sth photon,
e.g. with S=64 for the BATSE time-to-spill mode. This data mode has the at-
tractive feature that its time resolution is greater when the source is brighter
(and possibly more active, so that more time resolution is useful). The likeli-
hood in Eq. (32) of [?] simplifies, with slightly revised notation and using the
fourth comment at the beginning of this section, to

L
(k)
TTS = λSNspillse−λM (44)

where Nspills is the number of spill events in the block, and M is as usual the
length of the block. With N = NspillsS this is identical to the Poisson likelihood
in Eq.(??), and in particular the maximum likelihood is at λ = NspillsS

M and the
corresponding cost function is

logL
(k)
max,TTS = SNspills(log

NspillsS

M
− 1) (45)

just as in Eq. (??) with N = SNspills, and with the same property that the
unit in which block lengths are expressed is irrelevant.

4.2 Binned Data

One of the most common data modes consists of counts in bins. The bins are
typically predefined intervals in the measured variable. The count Nn in bin n
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is simply the number of values in it. The data cells are simply the bins and
their associated counts:

Cell n ≡ {bin n,Nn}, n = 1, 2, . . . , Ntotal. (46)

Absent correlation effects, such as dead time, the probability distribution for
the number of events of a bin is Poisson, and this data mode is equivalent to that
discussed above in §??, with the bins taking the role of the ticks of that section.
Here we generalize these results (and those in [?]) in two ways, allowing unequal
bin sizes and a variable efficiency factor. The latter, sometimes called exposure,
refers to anything that affects the count (e.g. instrumental sensitivity, dwell
time, or uncorrected atmospheric effects). Assume that, whatever the nature
of the effect, it can be represented by an efficiency factor between 0 and 1,
such that the effective Poisson event rate is E times the actual (observed or
modeled) event rate. Because of the nature of our piece-wise constant Poisson
model, these two effects–bin size and bin efficiency–are equivalent in simply
altering the local event rate, and can be represented with a single parameter
equal to the product of the bin’s width and efficiency.

The likelihood for bin n is found from the Poisson distribution:

Ln =
(λEnWn)

Nne−λEnWn

Nn!
(47)

where λ is the actual event rate, in counts per unit time, and Nn is the number
of events in the bin. The bin width Wn is expressed in the same units as λ−1.
The efficiency factor En is averaged over the bin. The product WnEn can be
replaced with a single quantity, wn ≡ WnEn, expressing relative bin efficiencies.

The likelihood for block k is the product of the likelihoods of all its bins:

L(k) =
M (k)∏
n=1

Ln = λN
(k)

e−λw
(k)

. (48)

Here M (k) is the number of bins in block k,

w(k) =
M (k)∑
n=1

wn (49)

is the sum of the bin efficiencies in the block, and

N (k) =
M (k)∑
n=1

Nn (50)
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is the total event count in the block. We have discarded the factor
(EnWn)

Nn/Nn! in Eq. (??) because, when multiplied out over all blocks in
any model it produces a model-independent factor–its product over all bins.
Any such common factor is irrelevant for model comparison.

Note that the block likelihood is essentially the same as that of Eq. (??).
The only difference is that what we called a tick is now called a bin, and we
have allowed for a bin efficiency factor (which in principle could be applied to
ticks). Hence the maximum likelihood and marginal posterior cost functions to
be used here are the same as those of Equations (??), (??), (??) and (??), with
M (k) interpreted as the block-sum of the wn instead of just the number of ticks
in the block.

4.3 Point Measurements

Here is a very common signal processing scenario: in order to estimate a sig-
nal embedded in noise, one makes measurements at a sequence of times. For
example, if the noise is additive one has this nearly ubiquitous model for the
time series observations:

xn ≡ x(tn) = f(tn) + zn n = 1, 2, . . . N , (51)

where f is the unknown signal, and zn is the observational error (noise) at
time tn. The observation times tn may be evenly spaced or otherwise. We here
consider the case where the noise is assumed to be normally distributed and
with a known variance, so its probability distribution is:

P (zn|σn) =
1

σn
√

2π
e−

1
2 ( znσn )2 (52)

The data cell then is denoted

Xn = {xn, tn, σn} n = 1, 2, . . . , N , (53)

where xn is the value measured at time tn, and σn is the noise standard devi-
ation, assumed known. (To take σn as a free parameter complicates, but does
not fundamentally change, the procedure.)

In a block where the true signal is λ, the likelihood of measurement n is then

Ln =
1

σn
√

2π
e−

1
2 (xn−λσn

)2 (54)
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and the entire likelihood for block k is proportional to

L(k) =
∏
n

1

σn
e−

1
2 (xn−λσn

)2 (55)

where the constant factors have been dropped. The product is over all n such
that tn falls within block k; it depends on only the contents of those cells, and
for example – in contrast to the cases we have met above – is independent of
the specific locations of the endpoints of the block. In a real sense, the identity
of the block is equivalent to the list of cells falling within it.

(2π)−
N
2∏N

n=1 σn
, (56)

where here the product is over all N data points. Hence the block likelihood
can be written

L(k) = e−
1
2

∑
n(xn−λσn

)2 (57)

The maximum of this likelihood is found as follows: Clearly we can just as
well minimize the quantity

Q(λ) =
1

2

∑
n

(
xn − λ
σn

)2 , (58)

which can be done by setting its derivative to zero:

dQ(λ)

dλ
= −

∑
n

(
xn − λ
σ2
n

) (59)

so that

λmax =

∑
n(

xn
σ2
n
)∑

n(
1
σ2
n
)

(60)

Letting ρn = 1
σ2
n

be the weight corresponding to the variance of measurement
n, and putting the resulting expression

λmax =

∑
n ρnxn∑
n ρn

(61)

into the log of Eq. (??), we have

logP = −1

2

∑
n
ρn(xn −

∑
n ρnxn∑
n ρn

)2 (62)
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logP = −1

2

∑
n
ρn[x

2
n − 2xn

∑
n ρnxn∑
n ρn

+ (

∑
n ρnxn∑
n ρn

)2] (63)

logP = −1

2
[
∑
n
ρnx

2
n − 2

(
∑
n ρnxn)

2∑
n ρn

+
(
∑
n ρnxn)

2∑
n ρn

] (64)

logP = −1

2
[
∑
n
ρnx

2
n −

(
∑
n ρnxn)

2∑
n ρn

] (65)

logP = −1
2 [x̄2 − x̄2∑

n ρn
] (66)

This expression is related to the weighted variance, although there seems to be
no universal choice for how to define same. But it makes sense that the block
cost function is this variance: the best constant model for the block should have
minimum variance.

As in the other cases, we can alternatively marginalize λ, by choosing the
flat, unnormalizable prior

P (λ) = constant (67)

yielding for the marginal posterior

P (Bk) =
∫ ∞
−∞

e−
1
2

∑
n(xn−λσn

)2 dλ (68)

Setting

ak =
1

2

∑
n

1

σ2
n

(69)

bk = −
∑
n

xn
σ2
n

(70)

and

ck =
1

2

∑
n

x2
n

σ2
n

(71)

we have

P (Bk) =
∫∞
−∞ e

− 1
2 (akλ2+bkλ+ck) dλ (72)

=
√

π
ak
e

(
b2k
4ak

)−ck (73)
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The total posterior is of course

P =
∏
k

P (Bk) (74)

or, in terms of the additive log-posterior, we have

logP =
∑
k logP (Bk) =

∑
k[−1

2 log(ak) + ( b2k
4ak

)− ck] (75)

where the sum is over all blocks, k.
As with the other data modes, either of equations (??) or (??) can be used

for normally distributed data.

4.4 Distributed Measurements

The data can also consist of measurements of a quantity, averaged over a range
of values of t – not at discrete point, as in the previous section. A good ex-
ample is the spatial power spectra computed from measurements of the cosmic
microwave background radiation [refs.], where the different experiments have
widely different window functions (the term used to describe sensitivity as a
function of the independent variable – i.e., spatial harmonic number in the
CMB case). In this case the data array could consist of the structure in Equa-
tion (??) augmented by the inclusion of a window function, indicating the
variation of the instrumental sensitivity:

x = {xn, tn, wn(t− tn)} n = 1, 2, . . . , N , (76)

where wn(t) describes, for the value reported asXn, the relative weights assigned
to times near tn, and all other quantities are as in Eq. (??).

This is a nontrivial complication if the window functions overlap, but can
nevertheless be handled with the same technique.

We assume the standard piece-wise constant model of the underlying signal,
that is, a set of contiguous blocks:

B(x) =
Nb∑
j=1

B(j)(x) (77)

where each block is represented as a boxcar function:

B(k)(x) = { Bj ζj ≤ x ≤ ζj+1
0 otherwise (78)
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the ζj are the changepoints, satisfying

min(xn) ≤ ζ1 ≤ ζ2 ≤ . . . ζj ≤ ζj+1 ≤ . . . ≤ ζNb ≤ max(xn) (79)

and the Bj are the heights of the blocks.
The value of the observed quantity, yn, at xn, under this model is

ŷn =
∫
wn(x)B(x)dx

=
∫
wn(x)

∑Nb
j=1B

(j)(x)dx

=
∑Nb
j=1

∫
wn(x)B(j)(x)dx

=
∑Nb
j=1Bj

∫ ζj+1

ζj
wn(x)dx

(80)

so we can write

ŷn =
Nb∑
j=1

BjGj(n) (81)

where
Gj(n) ≡

∫ ζj+1

ζj
wn(x)dx (82)

is the inner product of the n-th weight function with the support of the j-th
block. The analysis in [?] shows how do deal with the non-orthogonality that
is generally the case here.7

[Note: the following repeats some of the above, and therefore needs to be
rewritten.]

The averaging process in this data model induces dependence among the
blocks. The likelihood, written as a product of likelihoods of the assumed
independent data samples, is

P (Data|Model) =
∏N
n=1 P (yn|Model) (83)

=
∏N
n=1

1√
2πσ2

n

e−
1
2 (yn−ŷnσn

)2 (84)

=
∏N
n=1

1√
2πσ2

n

e−
1
2 (
yn−

∑Nb
j=1

BjGj(n)

σn
)2 (85)

= Qe−
1
2 (
yn−

∑Nb
j=1

BjGj(n)

σn
)2 , (86)

7If the weighting functions are delta functions, it is easy to see that Gj(n) is non-zero if and only if xn lies in
block j, and since the blocks do not overlap the product Gj(n)Gk(n) is zero for j 6= k, yielding orthogonality,∑
N Gj(n)Gk(n) = δj,k. And of course there can be some orthogonal blocks, for which there happens to be no

“spill over”, but these are exceptions.
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where

Q ≡
N∏
n=1

1√
2πσ2

n

. (87)

After more algebra and adopting a new notation, symbolized by

yn
σ2
n

→ yn (88)

and
Gk(n)

σ2
n

→ Gk(n) , (89)

we arrive at
logP ({yn}|B) = Qe−

H
2 , (90)

where

H ≡
N∑
n=1

y2
n − 2

Nb∑
j=1

Bj

N∑
n=1

ynGj(n) +
Nb∑
j=1

Nb∑
k=1

BjBk

N∑
n=1

Gj(n)Gk(n) . (91)

The last two equations are equivalent to Eqs. (3.2) and (3.3) of [?], so that the
orthogonalization of the basis functions and the final expressions follow exactly
as in that reference.

4.5 Gaps and Mixed Data Modes

In some cases there are subintervals over which no data can be obtained (e.g.
gaps due to occultation by the Earth in an observation from space, or failures
in the detector system). What matters is the “live time” during the block, and
this is simply the sum of the cell lengths. Thus data gaps can be handled by
ignoring them! The only subtlety lies in interpreting what the model implies if
a block extends across a gap. For each block the procedure yields the optimum
rate parameter for whatever data lies in the block, ignoring any gaps. At the
end of the procedure, for display purposes the gaps can be restored and plotted,
preferably with some indication that rates within gaps are more uncertain.

Only if the fitness function depends on the total length of the block, and not
just the live time, do the lengths of the overlap between the block and these
gaps need to be included. The only example of this we have encountered results
from the adoption of a prior distribution of block width.
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Furthermore, one can even mix data modes. E.g., bins of arbitrary sizes
can be combined with point data. As with gaps the only burden for doing this
is placed on the fitness function, which in this case would have to include a
provision for data of mixed modes falling within the block. An example of this
would be the analysis of both binned and time-tagged event (TTE) data for
gamma-ray bursts observed by BATSE.

Which of the several posteriors above should be used? Should a new fitness
function be constructed, based on ones understanding of the data and potential
signals? If the conjugate prior is used, what values of its two parameters should
be used? The answers depend on what is known about the data and its errors,
as well as what one wants to assume about the signal. To aid in making such
choices, §?? has relevant examples.

4.6 Exposure Variations

The above analysis is meant for cases in which the measurements are carried
out uniformly over the entire interval. An exception is the case of point mea-
surements with observations are uniformly This section describes the treatment
of implementation of the Bayesian Blocks algorithm described here is new in
that it explicitly allows for known gaps in the data and/or variable effective
area, and includes an estimate of the statistical significance of the blocks.

In summary, the algorithm consists of these steps:
1. Put the photons in order of increasing time.
2. Close up the gaps e.g., by subtracting from each photon time the sum

total of the widths of the prior gaps.
3. Compute the intervals between photons.
4. Compute the average effective area over each such interval.
5. Multiply the length of intervals (3) by effective area (4).
6. Regenerate effective detection times by computing the cumulative sum

of these modified intervals. (Alternatively, one can use a cost function that is
defined in terms of the interval durations.)

7. Carry out the standard Bayesian block analysis of this squeezed data, as
though they were obtained in a single interval with constant effective area.

8. Express the photon rates and edge locations of each block in terms of the
original times, thus undoing the time distortions of steps (2)-(6).
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9. Display the blocks. (If desired, indicate that no representation is being
made of the estimated rate within gaps. In some contexts, an interpolation of
the photon rate in the gaps may be a reasonable thing to do.)

10. Compute from the block representation any needed quantities flare onset
time, duration, interval between flares, etc.

Notes:
(1) The effective area as a function of time must be known. What is needed

(and will herein be meant by the term) is the relative effective area, a number
between 0 and 1, computed for each photon.

(2) The gaps intervals of zero exposure – must have specified beginning
and ending times, and of course all photon times must lie within the goodtime
intervals (GTIs) between gaps.

(3) If this algorithm assigns one or more blocks that span across data gaps,
no magic information about the unsampled time interval is implied. It simply
means that the photon rates just before and after the gap are estimated to be
the same, to within statistical errors. If this is not so, the algorithm places two
blocks with different photon rates before and after the gap implying nothing
about the unsampled time interval.

Bayesian blocks without gaps or effective area variation.
Only a brief review of the standard Bayesian blocks algorithm will be given,

as it has been described elsewhere (Scargle 1998, etc.) in detail. The algorithm
considers all possible partitions of the photons into blocks, and maximizes a
goodness-of-fit measure for the model in which the photon rate is constant
within each block, but varies from block to block. Several such measures can
be implemented. While the use of the Bayesian posterior probability of the
constant-rate model led to the name of the algorithm, I recommend instead the
use of a cost function based on maximum likelihood, as it results in a criterion
that is invariant to a change in the units of time.

The algorithm operates on the data in a sequential way that makes imple-
mentation of a real-time mode trivial, detecting the first instant at which the
data obtained so far are better represented with two blocks than one. This
mode could easily provide a flare or burst detector (that requires neither time
bins nor a set threshold).

It is convenient to include in the cost function an expression of some prior
knowledge of the number of blocks needed to represent the data. That is not
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to say that one pretends to know this number ahead of time (as most related
algorithms do), but that one knows a probability distribution for the number of
blocks. This is the (in)famous prior of Bayesian analysis, and can be interpreted
as something like an effective smoothing parameter. A simple representation of
this prior knowledge leads to a single parameter, the value of which can be set
from Monte Carlo or other forms of numerical experiments, and possibly can be
exactly determined from first principles in the context of various assumptions
about the structure, or smoothness, of the true variability function. However,
note that the Bayesian block segmentation scheme does not implement any
smoothing explicitly.

Fig. 1: block representation of Gaussian data with no gaps and constant
effective area. In all plots shown here, raw data are shown as histograms com-
prising evenly spaced bins, for visualization only. No binning is imposed in the
algorithm.

Figure 1 shows the application of the standard BB algorithm (with the max-
imum likelihood cost function, used throughout) on a sample of 1024 times
drawn from a normal distribution. The prior parameter mentioned above is set
at a value found to be effective in various numerical experiments. The red/thick
horizontal bars delineate the block representation that optimally represents the
sampled data. It captures the overall shape of the normal distribution, subject
to the statistical uncertainty due to the finite (N = 1024) sample.

Significance analysis.
The algorithm provides the optimal representation consistent with the data,

and one needs to be able to assess the significance of this result. In any multi-
parameter model estimation context, full information about statistical signifi-
cance is contained in the joint posterior probability distribution of the parame-
ters. If one desires a single number (This model is correct at the 95% confidence
level.), this situation can result in a confusing array of possible summary statis-
tics, the choice among which seems arbitrary. A common systematic approach
is to isolate the distribution of one parameter with the others fixed at their
best-fit values, or perhaps marginalized in the Bayesian sense. A problem with
this procedure is that it does not represent correlations among the parameters.
Another idea in the context of time series models is to represent the uncertainty
of the model amplitude as a function of time. Bootstrap or other resampling
techniques can be useful in this regard.
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Here the parameters of the model are
The number of blocks or change-points ( Nblocks , Ncp) The change-point

times (Ncp in number) The amplitude, or height, of each block (Nblocks in
number)

The fact that the number of parameters is a function of one of the other
parameters is characteristic of so-called non-parametric models. Another point
is more specific to the present context: the change-point locations are more
fundamental and the block amplitudes less so, in the following sense. Once
the change-points are fixed, the amplitudes are tightly determined by the data
typically as the event rate averaged over the block:

N being the number of points, or events, in the block of length ?t. The
Poisson distribution, taken as a function of ? for given rate N/?t, narrowly
determines the parameter for any reasonably large rate.

There are many aspects of the representation to which one might want to
assign an uncertainty estimate. For example, one might want to study the
uncertainty of the locations of the block edges, that of the amplitudes of the
blocks, or indeed that of the light curve as a whole. The numbers shown near
the top of Fig. 1, and connected to changepoints (block edges) with dotted
lines, are base 10 logarithms of the likelihood ratio

where H2 is the hypothesis that there are two blocks (in the interval including
the blocks before and after the changepoint), and H1 that there is just one.
This quantity measures (logarithmically) the probability that that changepoint
is real. Note that all the changepoints in Figure 1 are highly significant. This is
partly due to the fact that the choice of the prior parameter is very conservative.
Less conservative choices yield more changepoints, with less signficance.

Bayesian blocks with gaps.
Lets turn next to the treatment of gaps. The simple process is more or less

completely described in the algorithm summary above. The local nature of the
segmentation approach means that gaps can essentially be ignored. The cost
function expresses the likelihood that the constant-Poisson-rate model repre-
sents the data for the exposed part of the block. (For now we assume unit
effective area in the goodtime intervals outside of the gaps.) The gap regions
do not contribute data and are not included in the cost function.

Fig. 2: block representation of Gaussian data with two gaps [ (-2, -1.5) and
(1.1,1.6) ], but constant effective area outside of the gaps.
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Figure 2 above shows the results of an analysis of data similar to that in
Figure 1, but with two gaps. Note that there are roughly speaking two possi-
bilities for the blocks near a gap. The algorithm may yield a block that spans
the gap, indicating that there are regions just before and just after the gap that
have sensibly the same average rate. Or, if the pre-gap and post-gap rates are
statistically different, there are two block abutting the gap, one before it and
one after. Both cases are represented in Figure 1.

Bayesian blocks with effective area variations.
Now consider the case of know effective area variations across the sample

interval, but no actual gaps. As indicated in the summary, the effective area is
accounted for by shrinking the corresponding inter-photon time intervals. This
makes sense because an effective area E ¡ 1 means that the effective rate is less
by a factor E, and corresponding the intervals on average will be greater by the
same factor. Multiplying the time intervals by E in a sense restores the intervals
to what they would have been if the effective area had been unity. Of course
this restoration is not exact in individual cases, but is correct on average.

Quantitatively, for a uniform random process with rate ?, the distribution of
intervals between events is exponential:

and the mean interval
can easily be found to be inversely related to the rate. This is a heuristic

justification of the procedure postulated here.
Fig. 3: block representation of Gaussian data with no gaps but with dimin-

ished effective area in a region centered at -0.7 time units.
Figure 3 demonstrates the ability of the algorithm to account for diminished

effective area over part of the sample interval. Here the effective area applied
to the simulated data dropped to 50% in a region centered at -0.7 and with a
Gaussian width of about +/- 1 unit of time. The block covering this region has
an amplitude larger than would be indicated by the sampled data alone, because
it has been automatically increased to account for the diminished effective area.
The uncertainty in the representation in this region is larger too, as expected.

Bayesian blocks with gaps and effective area variations.
Fig. 5: block representation of Gaussian data with gaps and with diminished

effective area in a region centered at -0.7 time units.
3C454.3: **preliminary** analysis
This section presents preliminary analysis of some early 3c454.3 data, kindly
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provided by Stefano Ciprini. The first figure shows three presentations of the
squeezed data. That is, the gap and effective area procedures have been ap-
plied, and the time series represented without un-doing the squeezing. This can
be thought of as a light curve plotted on a time axis that has been transformed
in a nonlinear (and not even continous), but monotonic way. The first panel
is simple binning, in an arbitrary number (128) bins. The next three panels
present alternative representations of the same raw data, superimposed on the
binned representation from the first panel. Panel 2 is the Bayesian block rep-
resentation, and the remaining panels are variable width bins with the same
number of events (and hence a kind of equalized signal-to-noise) in each bin:
128 photons and 64 photons per bin.

Fig. 6: Bin and block analysis of squeezed data.
The Bayesian block method does not have fixed resolution, and the short

time-scale spikes shown may be real. Any such conclusion must be verified
using perfected effective area and gap data, and should not be taken seriously.

The next figure shows the averaged fluxes provided by Stefano (panel 1),
followed by the unsqueezed Bayesian block representations. Panel 2 is with
both gaps and effective area accounted for, and Panel 3 has been computed
with the effective area in the goodtime intervals assumed constant. One can
thereby see that effective area corrections are important.

4.7 Prior for Number of Blocks

In earlier work [?] no explicit prior probability distribution was assigned the
number of blocks, i.e. the parameter Nblocks. This omission amounts to using
a flat prior, but in many contexts it is unreasonable to assign the same prior
probability to all values. In particular, in most settings Nblocks << N is a priori
much more likely than Nblocks ≈ N . For this reason it is desirable to impose a
prior that assigns smaller probability to a large number of blocks, and we adopt
this geometric prior [?]:

P (Nblocks) = P0γ
−Nblocks (92)

for 0 ≤ Nblocks ≤ N , and zero otherwise since Nblocks cannot be negative nor
larger than the number of data cells. The normalization constant – irrelevant
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for model comparison – is easily obtained, giving

P (Nblocks) =
1− 1

γ

1− ( 1
γ )N+1γ

−Nblocks (93)

Through the dependence of this prior on Nblocks, the value of γ affects the
number of blocks in the optimal representation–a number of some importance
since it affects the visual appearance of the representation and to a lesser extent
the values of quantities derived from it. To favor smaller numbers of blocks, γ
must be > 1; as it increases beyond 1 there are fewer and fewer blocks in the
optimal representation. Thus, while it is not explicitly a smoothing parameter,
its effect can be mistaken for such.

It is of some use to compute from eq. (??) the expected number of blocks:

< Nblocks > = P0

N∑
Nblocks=0

Nblocksγ
−Nblocks (94)

The sum can be evaluated to give:

< Nblocks > =
1

γ − 1
+

N + 1

1− γN+1 (95)

The form in Eq. (??) is not the only prior possible, but it is very convenient
to implement, since with the fitness equal to the log of the posterior, one only
needs to subtract the constant log γ from the fitness of each block. A few
examples will now show how the value of γ can be determined, and demonstrate
that, especially with good signal-to-noise, the block representation is not very
sensitive to the precise value adopted.

Figure ?? is the result of one such simulation study of BATSE TTE data,
using all 523 bursts with at least 1, 000 photons. An ordinary histogram of all
photons in a burst, with 1024 evenly spaced bins, was taken as the true signal
for that burst. Then 10 random subsamples of 1

8-th as many photons were
put through the algorithm, using the maximum likelihood cost function, Eq.
(??). The resulting block representation was evaluated at the same 1024 time
points as the true signal; the RMS difference between the two was taken as the
measure of error. This operation was done for the 32 values of ln γ shown in the
figure, and for 10 realizations of the random eightfold downsampling. The error
curve (upper panel) is relatively flat, nearly constant for lnγ in the approximate
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Figure 3: Simulation study for the parameter γ. Top panel: Error, averaged over 10 resamplings
of 104 BATSE TTE bursts, vs. ln γ (3σ error bars). Bottom panel: Distribution of values of
ln γ giving minimum error for the individual bursts.

range 2-8, with a nominal optimum at 5. Since the optimal values of γ vary
somewhat widely from burst to burst (bottom panel), the flatness of the error
curve means that the errors in the block representation of the light curves will
not be greatly in error if one adopts a single value of γ for all bursts. Some of
this scatter is no doubt due to the dependence of the optimal γ on the number
of data cells, but the latter does not vary over enough of a range to allow us to
study this effect here.

The effect8 of log γ in this and other simulations seems to level off at around
6. We have adopted the value 8 in the examples shown here. A simple argument,
due to Mike Nowak, yields γ ≈ N , where N is the number of data points.

These results are given not as a universal result for γ but because the general

8A large value of this parameter naturally has the effect of reducing the number of blocks, producing a block
representation that has less structure – giving a smoother visual appearance. But the parameter is not explicitly
a smoothing parameter.
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shape of the curve in Fig. ?? does seem characteristic of a wide variety of situ-
ations. We recommend that persons using the algorithm carry out simulations
of this kind to study the behavior of the algorithm as a function of γ for their
application.

5 Examples

This section presents results using the algorithms given in the Appendix on
various sample data sets.

5.1 Determination of the Parameter γ

In applications, one must specify the prior for the number of blocks. The
convenient geometric prior described in §?? amounts to the assumption that
the prior probability of k + 1 blocks is a constant factor, namely 1

γ , times that
for k blocks. Values of γ > 1 express the notion that a small number of blocks
is a priori more likely than a large number.

In principle, the value of γ depends on one’s prior knowledge of the number of
blocks, but in applications it is rare that one can express this knowledge simply.
In this section we perform block analysis of synthetic data where, knowing the
correct answer, we can determine the best value.

5.2 Dynamic Range

One of the goals listed in §?? was that the algorithm have a large dynamic
range. Here we give an example meant to demonstrate the dynamic range in
both time and amplitude. The synthetic signal is a single block superimposed
on a constant background, and the data are a set of points drawn from a
distribution with the corresponding shape. The value log(γ) = 8 was used, and
we adjusted the number of events in the spike to be as small as possible and still
detect the spike. The errors in the block edges (-4 and +17 microseconds) are
just perceptible in the figure. For as few as 4 events the spike was detectable
only by making log(γ) = 4, and with larger errors.

The next figure depicts a segmentation analysis meant to demonstrate the
ability of the algorithm to handle a signal that has a large dynamic range in
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Figure 4: Maximum likelihood segmentation of a synthetic spike: 8 events in .0001 second on
a background of 2000 events over the unit interval, only a small fraction of which is plotted.
The solid lines at the top of the figure indicate the edges of the actual block; the dotted lines
are the two changepoints of the optimal segmentation. The actual points are shown just below
the histogram of the raw counts.

amplitude. The signal consists of three adjacent blocks on a small, constant
background. The middle block has a much smaller amplitude, and the goal is
to see if the near presence of large spikes on either side affects its edges. The
rates in the spikes are roughly a million times the background rate and several
thousand times the rate of the central satellite block. The dotted lines near
the top signify the estimated block edges, or changepoints, whereas the solid
lines denote the actual edge locations. The errors in the four edge locations
are all less than 10−8 seconds. Our method is essentially impervious to large
amplitude differences within a signal. In fact, increasing the number of counts
in the main spikes in this example would only enhance the determination of the
edges.
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Figure 5: Maximum likelihood segmentation of a set of block with a large range of amplitudes.
Each block has a width of 200 microseconds, with 100,000, 50, and 200,000 events, respectively,
while the background consists of 1,000 events over the full 1 second interval analyzed. The
central block and background are almost imperceptible on the scale of the figure. The analysis
parameters are the same as in Fig. ??

5.3 Point Data Time Series

Figure ?? shows the optimal block decompositions of data for a γ-ray burst
based on the point data comprising the TTE data for BATSE trigger 0551
(reference). The value log(γ) = 8 was used for the parameter in the prior. This
analysis is based on the first 14, 000 photon time tags for this burst. The full
data set consists of 28, 904 photons, but the last half is essentially background.
Since the data are time tagged events, we used the form of the posterior given
in Equation TBD. Need to compare duplicates allowed with not allowed.

Figure ?? shows the TTE data summed over all four energy channels, an-
alyzed with four different values of the prior parameter log γ. The first panel
corresponds to a flat prior, giving too much prior probability to large numbers
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Figure 6: Simulation study, to find optimum value of the parameter logγ.

of changepoints. The obvious symptom is the appearance of many short spikes,
corresponding to narrow intervals in which statistical fluctuations are elevated
by the inappropriate prior into apparent significance. These putative features
that are probably not real, and—while they represent a small amount of flu-
ence (intensity × duration), they are cosmetically obnoxious and confound, for
example, procedures for automated identification of pulses (local maxima).

The second panel, with a prior that gives lower weight to large numbers of
changepoints has fewer spikes. By the time one reaches log γ = 4, there is
little change in the representation (cf. Figure ??). This result is not necessarily
universal, but the figures shown here indicate that the value log γ = 8 is quite
reasonable and that values somewhat lower or higher would not make any real
difference in the final representation.
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Figure 7: Optimal partitions of BATSE TTE data for Trigger 0551. All photons were used in
the top panel; the others are based on the smaller number of photons detected in each of the
four BATSE energy channels.

5.4 Binned Data

Figure 5 shows the block representation for a portion of the light curve of
the first burst in the BATSE catalog, observed on April 21, 1991, Trigger 0105.
These data are available [?] 9 in binned format, with larger bins at the beginning,
transitioning to smaller bins at the fiducial trigger time.

The three panels in the figure are for different values of the prior parameter
log γ . The first case, log γ = 0, corresponds to a flat prior. With this rather
strong encouragement for a large number of blocks, it is seen that the block
representation is identical to the raw binned data. Even the coarse pre-trigger

9BATSE continuously recorded data in time bins 1.024 seconds long, and the time series posted on the web
has 116 seconds of such low-resolution data pre-pended to the 16 times higher (64 millisecond bins) resolution
data starting at the fiducial trigger time. To make the bins equal, the numbers given on the web site apportion
the counts in each large bin into 16 small bins. Since our analysis can handle unequal bins, we have undone
this, and reconstructed the actual integer counts in the larger bins.
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Figure 8: Optimal partitions of BATSE TTE data for Trigger 0551. Same as the first panel of
Figure 3, except that four different values of log γ were used: 0, 2, 4 and 8

bins that seem to be combined into large blocks because their event rates are
so similar, are represented as separate blocks.

The second panel, log γ = 8, corresponds to the best choice for the parame-
ter, and can here be taken as the best block representation of these data. The
last panel, log γ = 16, corresponds to too much of a penalty against a large
number of blocks. One notes that the most intense peak, which is resolved into
two peaks in the other panels, is here a single peak.

Finally, for comparison in Figure 6, we show analyses of the same data, un-
binned, binned, and time-to-spill, for BATSE Trigger 0551. This figure was
created with the MatLab code included in the Appendix and available elec-
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Figure 9: BATSE Trigger 0551. Top: TTE data. Middle: same data, binned into 256 bins.
Bottom: same data, converted to time-to-spill data with S = 64.

tronically. Note that the results for the three different data modes are nearly
identical, except for details of the first pulse.

5.5 Maximum Likelihood Histograms

One may obtain data in order to study the probability distribution of the mea-
sured variable. The histogram [?, ?] is perhaps the simplest estimator for the
underlying distribution function,10 but is known to be sensitive to the choice of
bins. Procedures for choosing the number of bins, such as Sturges’ rule or Kevin

10However, the empirical cumulative distribution function is also very useful and can be evaluated almost
trivially and nonparametrically [?].
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Knuth’s entropy-based approach [?], and for eliminating sensitivity to bin lo-
cations, such as the average shifted histogram, have been designed to achieve
various goals [?].

Almost always the bins are taken, somewhat arbitrarily, to be equal in size.
A simple way to achieve greater resolution where the data warrant it, sometimes
called the equi-depth histogram, is to make each bin contain the same number
of points – leaving the problem of choosing this number.

Note that if the measurements are arranged in increasing order, one can think
of the underlying probability density as a signal, and use segmentation ideas
to model and estimate it. In particular, a straightforward piecewise constant
density estimate provides a data-adaptive histogram in which the number and
location of the bins are determined by the data themselves. The fitness functions
derived above for independently distributed point data are appropriate for any
histogram estimation, since counts of events in intervals are governed by the
Poisson distribution. If one has little or no information about the measurement
errors or the smallest measurable difference (the quantum of the measurement,
cf. §??), as if often the case, the maximum likelihood fitness function in Eq.
(??) is appropriate. Its invariance property makes specification of scale of the
measured variable or its quantum unnecessary.

It remains to specify the prior on the number of blocks. Figure (??) de-
picts the results of a Monte Carlo study of maximum likelihood histograms of
synthetic data from a Poisson process which changes rate at known locations.
The error of the representation was computed by comparing the number and
location of the actual and estimated changepoints, with the result that the op-
timum value of the parameter log(γ) in the geometric prior can be determined.
This kind of study is only valid for the specific problem simulated, but it is rea-
sonable to assume that the results would not be drastically different for other
situations. It is natural that the optimum parameter depend on the number of
data points, and the figure shows an empirical relationship.

Figure ?? histograms of readily available data on the durations of eruptions of
the Old Faithful geyser in Yellowstone National Park. The top part of the figure
is based on 107 measurements from [?], also found in Table 2.2 of [?]. The latter
author uses these data to demonstrate a number of existing density estimation
methods, including conventional fix-bin histograms, the naive estimator, kernel
estimators with kernels of various widths, the nearest neighbor method, variable
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Figure 10: Simulation study for histograms.

kernels, orthogonal series estimators, maximum penalized likelihood estimators,
general weight function estimators, and others. It is dangerous to use data from
a phenomenon that is not understood in detail. In particular, here we do not
know what the true distribution is. But it may be instructive to compare our
segmentation results with those in textbooks such as [?]. The main difference
in the upper panel of Figure ?? is that the maximum likelihood histogram is
consistent with a bimodal distribution consisting of two rather flat components;
with the ordinary histogram, while the bimodality may be pretty secure, the
shapes of the components are ambiguous. The histograms in the lower panel,
with more than twice as much data, more or less confirm the correctness of our
description based on the data in the upper panel.
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5.6 Measurements with Normal Errors

First consider a simulation consisting of measurements at arbitrary times in
an interval. These variates are taken to be zero-mean-normal, except over an
unknown sub-interval where the mean is instead an unknown nonzero constant.
Figure ?? shows synthetic data for three simulated realizations with different
values for this constant. The solid line is the Bayesian blocks representation,
using the posterior in Eq. (??). For the smallest amplitude (first panel), no
changepoints are found and so the signal is completely missed. In the next
panel, the solution is correct except that the second changepoint is one point
too early, while the solution in the third panel gets both changepoints correct.

In this experiment the points are evenly spaced, but only their order matters,
so the results would be the same for arbitrary spacing of the data points.

A recent paper [?] on multiscale methods discusses essentially the same prob-
lem and develops several theorems for the aysmptotic behavior of optimal de-
tectors of such signals. To quote these authors, “In short, we can efficiently
and reliably detect intervals of amplitude roughly

√
2logN , but not smaller.”

Figure 4 reports some results of detection of the same normally distributed step-
function process shown in Figure ??. The solid lines show the root-mean-square
residuals from the true function, while the dashed line

This figure generally confirms this theoretical result, since the errors (both
and a measure of the errors in the number and location of the changepoints)
are

5.7 Real Time Analysis: Triggers

Because of its incremental structure, our algorithm is well suited for real-time
analysis. Starting with a small amount of data, the algorithm typically finds
no changepoints. But at each step, by determining the optimal partition up to
and including the most recently added data cell, the algorithm effectively tests
for the presence of the first changepoint11. If the real time mode is selected, our
algorithm halts at the first significant changepoint and reports its location. Of
course other halting conditions are possible, e.g. that a changepoint be found
and its position remain stable for a fixed number of steps.

11It is rare, but not impossible, that this first indication of change yields more than one changepoint.
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The real time mode can detect the presence of a time-dependent signal rising
significantly above a slowly varying background. For example, in a photon
stream the resulting trigger indicates the presence of a new bursting or transient
source.

The usual way to approach this and similar problems is to report a detection
if and when the actual event rate, averaged over some interval, exceeds one or
more pre-set thresholds. See [?] for an extensive discussion, as well as [?, ?, ?]
for other applications in high energy astrophysics. One must consider a wide
range of configurations: “BAT uses about 800 different criteria to detect GRBs,
each defined by a large number of commandable parameters. [?]”. Both the size
and locations of the intervals over which the signal is averaged affect the result,
and therefore one must consider many different values of the corresponding
parameters. The idea is to minimize the chances of missing a signal because,
for example, its duration is poorly matched to the interval size chosen. If the
background is determined dynamically, by averaging over an interval in which
it is presumed there is no signal, similar considerations apply to this interval.

In principle, our segmentation algorithm greatly simplifies the above con-
siderations, since predefined bin sizes and locations are not needed, and the
background is automatically determined in real time. In practice, the situation
is not so simple. If one lets the data stream accumulate continuously, the N 2

dependence of the compute time eventually makes the computations unfeasible,
so in practice it is necessary to adopt a finite window size, and only analyze the
data in this sliding window. But slow variations in the background in many
cases would mandate something like a sliding window.

Because of additional complexities, such as accounting for background vari-
ability and the Pandora’s box that spectral resolution opens [?], we will defer
a serious treatment of triggers to a future publication.

We end this discussion with a brief discussion of a simple topic, of an issue
that can be relatively easily discussed, namely the false alarm (also called false
positive) – no signal is present but a noise fluctuation passes the algorithm’s
detection criteria. Unavoidably a detection procedure embodies a trade-off
between sensitivity and false alarms. Other things being equal, making an
algorithm more able to detect weak signals renders it more sensitive to noise
fluctuations. Making an algorithm avoid noise fluctuations renders it insensitive
to weak signals as well. In applications one typically chooses the balance of these
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competing factors based on some notion of the relative importance of avoiding
false positives and not missing weak signals. Hence there can be no universal
prescription.

Identification of a good algorithm may include adopting criteria that are
relatively more sensitive to signal and less to noise, perhaps making use of
prior information about the nature of both target signals and observational
noise. And typically a given algorithm contains one or more parameters that
can be adjusted, empirically or otherwise, to achieve improved selectivity. A
simple example: detection occurs when the data exceed a threshold, the value
of which is the adjustable parameter.

The corresponding parameter in our algorithm is log(γ). In the real-time
mode, this parameter has a simple interpretation: it fixes the value of the prior
odds ratio for triggering (vs. not triggering)

log
P (two blocks)

P (one block)
= −log(γ) (96)

Figure ?? quantifies the false alarm rate as a function of this parameter, from
analysis of signal-free Poisson noise12. The maximum likelihood cost function
was used, and its scale independence means that only the number of random
photons in each input interval, here denoted N , matters, and not the photon
rates—as approximately confirmed in this figure. The increased scatter for large
values of logγ is due to the small number of tabulated false positives. The figure
can be used to set the value of ln(γ) to achieve a desired maximum false alarm
rate.

12The rates plotted are the number of detections divided by the number of photons analyzed. This denomi-
nator is less than the number of simulated photons, due to the termination of the algorithm upon triggering.



6 APPENDIX A: MATLAB CODE 48

6 Appendix A: MatLab Code

This section contains MatLab13 code for the analysis tools. The function fit

evaluates the natural logarithm of the fitness function, and reverse reverses
the order of an array. The quantity eps is the smallest number representable on
the current machine. All other constructs and functions are standard MatLab.

6.1 Main Program

This program computes two different segmented representations of BATSE data
for a gamma-ray burst. These code listings can be used to recreate Figure ??,
as well as verifying all of the other code modules. The time-tags of the photon
detections are the raw data, and in (2) and (3) these same times are binned
and converted to time-to-spill, respectively. The array cell_sizes contains
the widths of each bin, which need not be equal as they are in this example.

% test_global.m
%-----------------------------------------------
% Optimal segmentation, for three data modes:
% (1) TTE data (2) binned data (3) TTS data
%-----------------------------------------------

first = 0; % Retrospective (not real-time) mode
tick2sec = .000002; % convert 2 microsecond ticks to seconds

%------------------------------------------
% Load BATSE TTE Data; make histogram
%------------------------------------------

[ tt, channels, detectors ] = load_ttedata( ’tteascii.00551’ );
min_tt = min( tt ); max_tt = max( tt );
bins = linspace( min_tt, max_tt, 256 );
dt_bins = bins(2) - bins(1); % bin width
xx = hist( tt, bins ); % make binned data

%------------------------------------------------
% Optimal segmentation: raw TTE Data
%------------------------------------------------

max_delt = 1; % Max separation of time tags
data_type = 1;

13 c© the Mathworks, Inc.
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bin_size = 2; % 2 microsecond ticks
data_cells = make_cells( tt’, data_type, max_delt, bin_size );
ncp_prior = 8;
cpv_1 = global_optimum( data_cells, data_type, ncp_prior, first );

subplot(3,1,1)
plot( tick2sec * bins, xx/dt_bins, ’-g’) % plot binned data for reference
hold on
[ ii_pulses, count_vec ] = plot_tte( tt, tt( cpv_1 ), 1 );
v = axis;
v(1) = tick2sec*min_tt;
v(2) = tick2sec*max_tt;
axis(v)
ylabel(’TTE (cps)’)

%---------------------------------------------------------
% Optimal segmentation: binned version of same data
%---------------------------------------------------------

cell_sizes = dt_bins * ones( size( xx ) );
data_cells = [ cell_sizes; xx; ]’;
cost_type = 2;
cpv_2 = global_optimum( data_cells, cost_type, ncp_prior, first );

subplot(3,1,2)
cell_begin = min_tt + cumsum( cell_sizes ) - cell_sizes(1);
min_height = plot_partition( cpv_2, xx, cell_sizes, cell_begin, xx );
ylabel(’Binned (cps)’)

%-------------------------------------------------------
% Optimal segmentation: TTS version of same data
%-------------------------------------------------------

ss_tts = 64;
tts_data = tt( 1:ss_tts: length( tt ) );
data_cells = make_cells( tts_data’, data_type, max_delt, bin_size );
data_cells( :, 2 ) = ss_tts * ones( size( tts_data ) );
ncp_prior = 8;
cpv_3 = global_optimum( data_cells, data_type, ncp_prior, first );

subplot(3,1,3)
plot( tick2sec * bins, xx/(ss_tts*dt_bins), ’-g’) % plot binned data for reference
hold on
[ ii_pulses, count_vec ] = plot_tte( tts_data, tts_data( cpv_3 ), 1 );
v = axis;v(1) = tick2sec*min_tt;v(2) = tick2sec*max_tt;axis(v)
ylabel(’TTS(cps / 64 )’);xlabel(’time (seconds)’)
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set(gcf,’PaperPosition’, [ 0 0 7 4.5 ] )
print -depsc2 C:\global_paper\ttebin3.epsc2
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6.2 Construct Data Cells

This routine constructs data cells, takinginto account time tags that are identical or so close
that they are to be assigned to the same cell, and similar details. For binned data, the routine
simply constructs the matrix of the proper data elements.

function data_cells = make_cells( tt, data_type, max_delt, bin_size )
%-------------------------------------------------------------------------
% Make data cells from data - for input to global optimization
%
% Input: tt -- array of time tags or bin counts
%
% max_delt -- maximum separation of times
% dt <= max_delt: in same cell
% dt > max_delt: in different cells
%
% data_type -- cell type: 1: midpoints (~Voronoi)
% 2: intervals (~Delaunay)
% 3: bins
%
% (dt = 0 corresponds to duplicate time tags)
%
% Output: cell_pops -- array of cell populations
%
% cell_sizes -- array of cell sizes
%
% NB: length of data_type 2 output is one smaller than of data_type 1
%
%------------------------------------------------------------------

if data_type == 3

% binned data

[ aa, bb ] = size( tt );
if aa > bb; tt = tt’; end
[ bin_flag, num_data ] = size( tt ); % force row vectors

if bin_flag == 1
cell_pops = tt;
cell_sizes = bin_size * ones(size(tt));

elseif bin_flag == 2
cell_pops = tt(1,:); % bin populations
cell_sizes = tt(2,:); % bins sizes
disp(’2’)

else
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error(’Incorrect matrix dimensions in global_optimum.m ...’)
end

else

% TTE data; interpret bin_size as time quantum ("tick")

tt = fix( tt / bin_size );
cell_pops = ones( size( tt ) ); % Initial: one datum per cell

%-----------------------------------------------------------
% Find clumps of points closer together than max_delt
%-----------------------------------------------------------

ii_close = find( diff( tt ) < max_delt );

while ~isempty( ii_close )

ii_start = ii_close(1); % Beginning of clump

%------------------------------------------------
% Index of end of the clump:
% all ii_close-indices up to but not including
% ii_beyond are in clump
%------------------------------------------------

ii_beyond = find( diff( ii_close ) > 1 );

if isempty( ii_beyond )
% All remaining close points are in the clump
ii_end = ii_start + length( ii_close );

else
ii_end = ii_start + ii_beyond(1);

end

ii_clump = ii_start:ii_end;

clump_pop = sum( cell_pops( ii_clump ) );
clump_tt = mean( tt( ii_clump ) );

% put memebers of the clump in one cell:
cell_pops( ii_start ) = clump_pop;

tt( ii_start ) = clump_tt;

% null the cells evacuated by this operation:
for ind = ii_end:-1:ii_start + 1
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cell_pops( ind ) = [];
tt( ind ) = [];

end

ii_close = find( diff( tt ) < max_delt );

end

if data_type == 1

%-------------
% midpoints
%-------------

dt = diff( tt );
ndt = length( dt );

cell_sizes = 0.5 * ( dt(1:ndt-1) + dt(2:ndt) );

dt_left = dt(1);
dt_rite = dt(ndt);

cell_sizes = [ dt_left cell_sizes dt_rite ];

elseif data_type == 2

%-------------
% intervals
%-------------

cell_pops( length( cell_pops ) ) = []; % last datum can’t define cp!
cell_sizes = diff( tt );

end

end % if data_type

data_cells = [ cell_sizes; cell_pops ]’;
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6.3 Global Optimum

This function implements the dynamic programming procedure which is the heart of the seg-
mentation process. The input variable data_cells is an ordered array containing the sequential
data. In many cases it comprises two arrays (the sufficient statistics): the numbers of events
in (often 1) and the sizes of the data cells. The integer cost_id identifies which cost function
is to be used, as detailed in the comments for the function log_cost. The parameter lgam is
a real number, typically approximately 8, expressing prior information about the number of
changepoints likely to occur. Finally, the input parameter first is simply a flag to indicate
whether the routine should return when it first encounters a changepoint as it sweeps through
the data in sequence. If this trigger mode is not to be used, the parameter and relevant if

statement can be removed.
The main output is the array cpt giving the index values (in the input array data_cells)

at which the changepoints occur. The convention is that the values in cpt give the data cell
which starts a block, so that the previous block ends at this value minus 1. The arrays last

and best are of value only for debugging or diagnostic purposes. The index R is of use only in
the trigger mode, and indicates the segment of the input data array that was processed when
the (first, and in this case only) changepoint was detected.

For interactive operation with large data arrays, it is sometimes useful to insert an output
statement indicating progress within the R loop.
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function [ cpt, last, best, R ] = global_optimum( data_cells, cost_id, lgam, first )
%=====================================================================================
% Find the optimum partition of sequential data
%-------------------------------------------------------------------------------------
%
% Input: data_cells -- sequential data array, a N x M array:
% * column index: the N data cells (each row is one cell)
% * row index: the M parameters to compute the cost function
%
% cost_id -- indicates cost function (see log_cost.m)
%
% lgam -- log of parameter in geometric prior for number of changepoints
%
% first -- 0 --> normal "retrospective" mode; analyze all data
% >0 --> trigger mode; return at first sign of a change
%
%
%-----------------------------------------------------------------------------------
%
% Output: cpt -- array of change points (index values for input array)
%
% last -- working array of indices\
% |-- for diagnostic purposes only
% best -- working array of optima /
% R -- for the realtime mode, this is how much data was processed
%
%-----------------------------------------------------------------------------------

[ num_cells, num_parameters ] = size( data_cells );

best = []; % "best(R)" is the value of the optimum at iteration R
last = []; % "last(R)" is the index at which this optimum occurs

%----------------------------------------------------
% Start with the first datum (R=1);
% add the next one at each iteration
%----------------------------------------------------

for R = 1:num_cells

if R == 1
qq = data_cells(R:-1:1, :);

else
qq = cumsum( data_cells(R:-1:1, :) );

end
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[ best(R), last(R) ] = max( [0 best] + ...
reverse( log_cost( qq, lgam, cost_id )’ ) );

if first > 0 & last(R) > first
% Trigger on first significant changepoint
cpt = last(R);
return

end

end

%------------------------------------
% Find the optimum partition
%------------------------------------

index = last( num_cells ); cpt = [];

while index > 1

cpt = [ index cpt ];
index = last( index - 1 );

end
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6.4 Load TTE Data

This routine reads the data from the BATSE files as posted at the data archive
at NASA’s High Energy Astrophysics Science Archive Research Center (HEASARC):
ftp://cossc.gsfc.nasa.gov/pub/data/batse/ascii_data/batse_tte/.

function [ times, channels, detectors, trig_time ] = load_ttedata( file_name )

% Open and read data from BATSE TTE files

[ fid message ] = fopen( file_name, ’r’);

if fid == -1

fprintf(1,[’Error opening file ’ file_name ’\n’] );return

else

fprintf(1,[’Successfully OPENED file ’ file_name ’\n’ ] )

end

%--------------------------------------

% Read the File Headder (5 lines)

%--------------------------------------

format1 = ’%s’;

for ijk = 1:5

aa(ijk).line = fgetl( fid );

end

trig_time = aa( 1 ).line;

trig_time = eval( trig_time( 38: length( trig_time ) ) );

npts = aa( 2 ).line;

npts = eval( npts( 9: length( npts ) ) );

%----------------------------------------------------------

% Now read the data: times, channels, detectors

%----------------------------------------------------------

[ times, count_times ] = fscanf(fid,’%f’, npts);

[ channels, count_channels ] = fscanf(fid,’%f’, npts);

[ detectors, count_detectors ] = fscanf(fid,’%f’, inf);

fclose( fid ); % close the file
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6.5 Logarithm of the Cost Function

This code segment computes any of the cost functions discussed above. To maintain the block
additivity of the cost function used by the optimization algorithm, the logarithm is computed.

function cost = log_cost( cell_data, ncp_prior, cost_type )

%-----------------------------------------------------------------------------------

% Log of cost function for various data types

%

% Input: cell_data -- MatLab structure containing these arrays:

% cell_sizes -- size of each cell

% cell_pops -- number of events in each cell

% ncp_prior -- complexity parameter (from prior on number of changepoints)

% cost_type -- 1 for TTE data; 2 for binned data, etc.

%

% Output: cost -- array of corresponding logarithmic cost function

%

%-----------------------------------------------------------------------------------

global lam_11 lam_22 p_11 p_22 log_lam

global alpha_0 beta_0

if cost_type == 1

cell_sizes = cell_data( :, 1 );

cell_pops = cell_data( :, 2 );

%-----------------------------

% TTE data

%-----------------------------

arg = cell_sizes - cell_pops + 1;

ii = find( arg > 0 );

num_bad = length( cell_sizes ) - length( ii );

if num_bad == 0

cost = gammaln( cell_pops + 1 ) + gammaln( arg ) ...

- gammaln( cell_sizes + 2 );

else

cost = eps * ones( size( cell_pops ) ); % eps is smallest number

cost(ii) = gammaln( cell_pops(ii) + 1 ) + gammaln( arg(ii) ) ...

- gammaln( cell_sizes(ii) + 2 );
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end

elseif cost_type == 2 % Binned data, infinite prior

cell_sizes = cell_data( :, 1 ); % (number of bins in the block)

cell_pops = cell_data( :, 2 ) + 1; % Note offset!

cost = gammaln( cell_pops ) - cell_pops .* log( cell_sizes );

elseif cost_type == 3

% Normally distributed measurements

sum_x_2 = cell_data( : , 1 ); % sum( x.^2 / sig^2 )

sum_x_1 = cell_data( : , 2 ); % sum( x / sig^2 )

sum_x_0 = cell_data( : , 3 ); % sum[ 1 / sig^2 )

cost = 0.5 * log( pi ) ... % this can be absorbed into log_prior

- 0.5 * log( sum_x_0 ) ...

+ ( ( sum_x_1 ) .^ 2 ) ./ ( 4 * sum_x_0 ) ...

- sum_x_2;

elseif cost_type == 4 % Binned data, conjugate prior

cell_sizes = cell_data( :, 1 ); % (number of bins in the block)

cell_pops = cell_data( :, 2 ) + alpha_0; % Note offset!

cost = gammaln( cell_pops ) - cell_pops .* log( cell_sizes + beta_0 );

elseif cost_type == 5 % Binned data, finite prior

cell_sizes = cell_data( :, 1 ); % (number of bins in the block)

cell_pops = cell_data( :, 2 ) + 1; % Note offset!

term_2 = gammainc( lam_22 * cell_sizes , cell_pops );

term_1 = gammainc( lam_11 * cell_sizes , cell_pops );

cost = gammaln( cell_pops ) + ...

log( term_2 - term_1 ) - cell_pops .* log( cell_sizes ) ...

- log_lam;

elseif cost_type == 10

cell_sizes = cell_data( :, 1 );
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cell_pops = cell_data( :, 2 ) + 1; % Note offset!

%---------------------------------------------------

% TTE data, multiple hits allowed, finite prior

%---------------------------------------------------

gam_term = gammainc( lam_22 * cell_sizes, cell_pops ) - ...

gammainc( lam_11 * cell_sizes, cell_pops );

cost = log( gam_term ) - cell_pops .* log( cell_sizes ) - log_lam;

elseif cost_type == 11

cell_sizes = cell_data( :, 1 );

cell_pops = cell_data( :, 2 ) + 1;

%-----------------------------

% TTE data; finite prior

%-----------------------------

arg = cell_sizes - cell_pops + 2; % NB 2, not 1

ig = find( arg > 0 );

qq_21 = eps * ones( size( arg ) );

qq_21(ig) = betainc( p_22, cell_pops(ig), arg(ig) ) - ...

betainc( p_11, cell_pops(ig), arg(ig) );

ii_bad = find( qq_21 == 0 );

qq_21( ii_bad ) = eps*ones( size(ii_bad ) ); % overflow

term_1 = eps * ones( size( arg ) );

term_1(ig) = betaln( cell_pops(ig), arg(ig) );

cost = term_1 + log( qq_21 ) - log_lam;

elseif cost_type == 12

%-------------------------------

% TTE data; max likelihood

% instead of marginalization

%-------------------------------

small = eps; % 2.2e-16

cell_sizes = cell_data( :, 1 );

cell_pops = cell_data( :, 2 );

prob = cell_pops ./ cell_sizes;
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cost = cell_pops .* log( prob + small ) ...

+ ( cell_sizes - cell_pops ) .* log( 1 - prob + small );

elseif cost_type == 13

%-------------------------------------------

% Maximum Likelihood

% Any Poisson data: duplicate tags ok

%-------------------------------

small = eps; % smallest number

cell_sizes = cell_data( :, 1 );

cell_pops = cell_data( :, 2 );

cost = cell_pops .* ...

( log( cell_pops + eps ) - log( cell_sizes ) - 1 );

end

cost = cost - ncp_prior; % prior on number of changepoints

6.6 Plot partitions

6.7 Plot TTE partitions

6.8 Reverse (from WaveLab)

function r = reverse(x)
% reverse -- Reverse order of elements in 1-d signal
% Usage
% r = reverse(x)
% Inputs
% x 1-d signal
% Outputs
% r 1-d time-reversed signal
%
% See Also
% flipud, fliplr
%

r = x(length(x):-1:1);

%
% Copyright (c) 1993. David L. Donoho
%
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%
% Part of WaveLab Version .701
% Built Tuesday, January 30, 1996 8:25:59 PM
% This is Copyrighted Material
% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@playfair.stanford.edu
%
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Figure 11: Histogram estimation of Old Faithful eruption durations. The black bars are an equal
width, fixed-bin histogram similar to those in [?]. The blue dashed line shows the adaptively
binned histogram determined with the methods described in this paper, with the maximum
likelihood fitness function. The blue dotted lines depict the rates where the probability in
the Poisson distribution drops to 0.05 times that at the peak of the Poisson distribution with
parameter equal the its maximum likelihood value. The solid red line is the mean of 1000
bootstrap samples, and the cyan shaded regions delineate 1, 2, and 3 time the bootstrap variance
about the mean. Upper panel: 107 values from Table 2.2 of [?]. Lower panel: augmented sample
of 230 points [?].
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Figure 12: One hundred normally distributed measurements – zero-mean (circles) except for
points 25-75 (squares), where the means are 0.2, 1.0 and 2.0 in units of the Arias-Castro et al.
threshold

√
2 logN . The dashed lines indicate the true changepoints and block amplitudes,

and the solid lines are the Bayesian block representations.
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Figure 13: Relative error in finding a single block. Abscissa: True block amplitude in units
of Arias-Castro et al.’s threshold amplitude. Ordinate: Error measures described in the text.
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Figure 14: False alarm rates per photon vs. ln γ. The number of photons per interval, N , and
in parentheses the number of averaged simulations, are indicated next to the line-style legend.
A linear fit for the false alarm rate is ∼ 0.085 γ−0.86±0.08 triggers per photon.


